

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC -270001 – 2005 certified)

SUMMER -2019 EXAMINATION

Subject code: 22301 Model Answer

Important Instructions to examiners:

- 1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language error such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and communication skill).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding

Q. No.	Question and Model Answers	Marks
1.	Attempt any FIVE of the following:	10M
a)	State the purpose of alidade and 'U' fork in plane table surveying.	
	 Ans: In plane table surveying, purpose of— 1) Alidade – 1) to sight the object and 2) to draw or plot sight rays. 2) 'U' fork – for centering the plane table. 	1M (each)
b)	Define swinging and transiting in theodolite surveying.	
	 Ans: In theodolite surveying, Swinging – The turning of telescope about the vertical axis in horizontal plane is termed as swinging. Transiting – The method of turning the telescope about its horizontal axis in a vertical plane through 180⁰ is termed as transiting. 	1M (each)
c)	What is face left and face right observations.	
	Ans: Face left observations – The observations taken with the vertical circle of instrument on the left side of the observer, are called face left observations. 1) Face right observation – The observations taken with the vertical circle of instrument on the right side of the observer, are called face right observations.	1M (each)

d)	State the principle of tacheometry.	
	Ans:	
	Principle of Tacheometry –The principle of tacheometry is based on the property of	
	isosceles triangles, where the ratio of the distance from the apex and the length	1M*
	of the base is always constant.	
	$\underline{D1} = \underline{D2} = \underline{D3} = \underline{f} = \text{constant}$	1M
	$\overline{S1}$ $\overline{S2}$ $\overline{S3}$ \overline{i}	
	Where f= focal length and i= stadia intercept	
	(*Note- Student may draw figure to explain principle,	
	give credit as 1M for figure and 1M for equation.)	
e)	Define horizontal curve and vertical curve.	
	Ans:	
	1) Horizontal curve –When the curve is provided in horizontal plane, it is	
	called as horizontal curve.	1M
		(each)
	2) Vertical curve – When the curve is provided in vertical plane, it is called as	
	vertical curve.	
f)	State uses of Total station.	
	Ans:	
	Uses of Total Station –	
	1) To measure horizontal, vertical and sloping distance.	2M
	2) To measure horizontal and vertical angles.	(for
	3) To measure the level difference between different points.	any
	4) To carry out contouring.	four
	5) To prepare the map and drawings using software.	uses)
	6) To prepare layout of building	
	7) To measure area and volume.	
g)	State uses of GPS.	
	Ans:	
	Uses of GPS –	2M
	1) To determine position or locations.	(for
	2) To navigate from one location to another.	any
	3) To create digitized map.	four
	4) To determine distance between two points.	uses)
	5) Used in remote sensing.	
	6) Used in military and space.	
	7) To track or monitor object or personal movement.	
2	8) To locate geographical features.	103.4
2.	Attempt any <u>THREE</u> of the following:	12M
a)	Define orientation and explain back sight method of orientation with sketch.	
	Ans:	
	Orientation-	
	The process of keeping the table at each successive stations parallel to the position	134
	which it occupied at the first station is known as orientation. OR The process by which the positions accupied by the board of various curvey stations.	1M
	The process by which the positions occupied by the board at various survey stations are kept parallel is known as orientation.	
	Back sight method of Orientation OUR CENTERS:	
	1) The table is set hip 1910 first station A and next station B is bisected with the	

	help of alidade and lineab is drawn with appropriate scale. 2) On moving the table to the next station B, the table is oriented with the help	2M
	of alidade.	
	3) The alidade is kept parallel to line ab and the table is rotated until the line of	
	sight bisects the first station A.	
	4) The board is clamped properly without disturbing the centering.	
		1M
		1
	a b a b	
	Station A Station B	
b)	State functions of optical plummet and shifting head in theodolite.	
	Ans: Functions of-	
	1) Optical plummet	
	a) An optical plummet to be used in combination with a surveying	
	instrument or theodolite.b) It is used for centering the theodolite over the station point.	2M*
	c) The optical plummet replaces the conventional plumb bob, in which a	ZIVI
	pointed weight is provided at the end of a string.	
	d) It has the advantage thereover that it can be more precisely set than the	
	conventional plumb bob. It is unaffected by the wind.	
	2) Shifting head contains two persists plates which are moved one over the	
	a) Shifting head contains two parallel plates which are moved one over the other within small area. Shifting head lies below the lower plate.	
	b) It is useful for exact centering of the whole instrument over the station.	2M*
	c) It is done after initial setting of instrument.	
	d) It is done by unclamping the screw and the upper plate of the shifting	
	head is slid over the lower one until the plumb bob is exactly over the	
	station mark.	
	(*Note-2M for any two points of each.)	
c)	Explain method of repetition of horizontal angle measurement.	
	Ans:	
	Method of repetition of horizontal angle measurement-	
	1) Set-up the theodolite over station O and level it properly.	
	2) Set the vernier A and vernier B at 0°0'0" and 180°0'0" respectively on the	
	horizontal graduated scale. This is done by loosening the upper clamp and moving the upper plate until the zero of the vernier plate A coincides with the zero of the	
	main scale. Tighten both the clamps.	
	3) Loosen the lower clamp and bisect point A, the readings in vernier A and vernier	3M
	B should be 0°0'0" and 180°0'0" respectively. Minor adjustment in reading is done	(for
	by lower tangent screw.	method
	4) Loosen the upper clamp and bisect point B. Point B is accurately bisected using upper tangent screw. Tighten both the clamps and note the readings in both verniers.)
	5) Tighten the upper clamp and rotate the telescope either in clockwise or	
	anticlockwise until it bisects point A. The readings in the vernier should remain the	
	same. Loosen the upper clamp and bisect point B. Point B is accurately bisected	
	using upper tangent screw. Tighten both the clamps and note the readings in both	
	verniers. This time vernier A will be twice of the earlier angle. KALYAN DOMBIVLI THANE NERUL DADAR	
3 1		0 1

	6) In the same way take the angle for the third time.7) Read the final angle. The average angle by face left will be the accumulated angle divided by 3.	
	8) Change the face of the theodolite and repeat the same procedure.	
	9) The mean of both angles gives the horizontal angle AOB.	
	30· 2 60· 3 90·	1M (for Fig.)
	0 1 30.	
d)	Explain with sketch notations of simple circular curve.	
	Ans:	
	Back tangent or first tangent at T1 C R B B B B B B B B B B B B	2M (for sketch)
		2M
	Where: Notations are as follows -	(for
	1) AB and BC are two tangents 5) T ₁ ET ₂ is length of curve.	any
	2) BT ₁ and BT ₂ are lengths of tangents 6) R is Radius of curve.	four
	3) BE are Apex distance. 7) T ₁ DT ₂ are length of long chord	notatio
	4) DE are Versed sine	ns)
3.	Attempt any THREE of the following:	12M
a)	Explain measurement of bearing of line using theodolite.	
	Ans: Measurement of Bearing of line using theodolite:	
	Consider a Line AB whose bearing is to be measured by using theodolite.	
	1. Fix the instrument to the tripod stand and set the instrument exactly over	
	station A. 2. Centre the theodelite level it by using three feet screws and make the hubble.	4M for
	2. Centre the theodolite, level it by using three foot screws and make the bubble exactly centre of tube with face left condition.	4M for proper
	3. Unclamp the both plate clamping screw and set vernier A to 0° and vernier B	sequen
	to 180° and clamp the both the plate screw.	ce
	4. Unclamp lower plate screw and swing the telescope in horizontal plane	
	keeping face left condition.	
	5. Place the trough compass exactly at the attachment provided to fix trough	
	compass at the top of the standards.	
	6. Swinging the telescope fix the lower plate clamp when trough compass shows	
1	exactly marily an DOMBIVLI THANE NERUL DADAR	

b)	 Unclamp the upper plate screw and bisect the ranging rod at B exactly and clamp the upper plate screw and take the readings on vernier A and Vernier B and note in the field book. Repeat the same procedure with face right condition and mean of the both the readings give the correct bearing of the line AB. State any four essential characteristics of tacheometer. 	
-	State any roar essential entire established of melleonicity	
	 The value of constant f/i = 100, where f is focal length and i= length of image. The telescope when fitted with anallatic less, the value of (f+c) should be zero. One should get clear and bright image even of long distance object. The telescope should be powerful, the magnification should be 20 to 30 times Diameter. The aperture of objective should be 35 to 45 mm in diameter in order to have Sufficiently bright image. 	1M each (any four)
c)	State the procedure of building set out using total station.	
	 On the site plan and the floor plan supplied by the an architect/engineer, number the column serially from left to right and top to bottom starting from top left corner. Work out the coordinates of the column centres with respect to any one plot corner or such other well defined point, assuming the parallel to any one building face as meridian. In case of load bearing building one should work out co- ordinates at point of intersection of all centre lines. Create on your personnel computer an excel document with four independent columns for column number and rest three for N,E, and H co-ordinates. Upload this file to your total station instrument by making use of communication/transfer software provided with the total station. Such software is invariably required to establish interface between external computer and total station instrument. Carry this total station to proposed site. Set the total station at site at a point with respect with which the co-ordinates of columns centre are worked out. Get done all the temporary adjustments of total station. Initiates the total station by providing it with the coordinates of the station occupied and by orienting the telescope along the meridian taken at the time of reduction of co-ordinates of column centres. Now, activate the setting of program on the board of total station. Open the uploaded file and bring in the play the coordinates of any column to be set out. Hold the prism pole at tentative position of that column at ground, bisect it and get measured its coordinates. In next second, machine will display the discrepancies in the coordinates of the point occupied and point to be set out. Get it understood, direct the reflector man accordingly to occupy the new position, bisect it again and get measured its coordinates to know the discrepancy in the coordinates of point occupied and point to be set out.	4M for correct sequen ce
	the columns. OUR CENTERS: 14. Check the recurrence of the property property of the diagonal	

distance between the extreme column centers to their calculated values .	
15 The points marked so may be transferred to the sight rails on sides, so that it	
can be easily referred by the workmen from time to time when the	
construction of foundation is in progress	
d) Define Active and Passive Sources.	
Ans:	
Active Sources (System):	
When the system in which irradiance from artificially generated energy sources such	2M
as RADAR, is used then it is called as Active system.	each
Passive Sources (System):	
The system in which sun and earths materials are used as natural sources so as to	
radiate electro magnet energy of variable wavelength is called as passive system	
4. Attempt any THREE of the following.	12M
a) Explain with sketch intersection method of plane table surveying.	
e C	
	2M
77	2111
L Comme m	
Figs Interrection Method.	
Ans:	
In intersection method the point is fixed on plan by intersection of rays drawn from	
the two instruments station.	
Procedure:	
Select two stations L and M in a commanding position.	
2. The line joining the station L and M is known as base line.	
3. Measure the base line LM.	
4. Set up the table at station L and mark the point l on sheet over L.	
5. Orient board by placing alidade along <i>lm</i> and turn the board until the ranging	
rod at B is bisected and clamp the board.	
6. With alidade touching point 1 draw rays 1,2,3, of indefinite length as shown in	
figure.	
7. The table is then shifted to station M, orient it by back sighting method.	2M
8. Through m draw rays towards the points previously sighted that is 4,5 are	
drawn. Intersection of rays drawn from 1 and m gives position of objects on	
paper.	
OUR CENTERS:	

	A traverse survey was conducted and following data is received, find missing							ıg 4M	
	lengt	th and b	earing of		T = -	T= .			
				Line	Length	Bearing	<u> </u>		
				AB	155.80	78°30′			
				BC	175.00	155°35′			
				CD	238.50	248°42′			
				DA	?	?			
	Lattitu Lattitu Lattitu	Reduc Reduc 2) Calcula ude of Lin ude of Lin ude of Lin Depar	ted bearing of the dearing of the deared of th	f BC = 155°3 f CD = 248° itude : θ = 155.80cos θ =175cos24° θ =238.50cos arture : AB = lsinθ =	: 155.80sin78	5°35′=\$24°2 180°00′=\$6 6 (as line going to 6 (as line going to 63 (as line going to 63 (as line going to	towards north is cowards south is come towards south		
	Denar							ds east is considered as +ve) rest is considered as -ve)	1M
	Верш	ture or Er	ne cb – isin	C = 200.0001	100 12 - 21	22.20 (us line g		est is considered as -ve)	13.5
					eparture of I	ine DA			1M
		_	Sum of all la -86.63+L=0	ititude = 0					
				-214.91+L=0)				
			ne DA = 214.						
			um of all dep 3-222.20+D=						
	152	.07+72.33		.8+D=0					
	∴Depa	arture of 1	ine $DA = -2.3$						
					ng <mark>of</mark> line DA	,			1M
		Length	of DA = $\sqrt{L^2}$	$+ D^2 = \sqrt{2}$	$14.91^2 + 2.8^2$	² = 214.92m			
	tan <i>⊖</i> =	$=\frac{D}{L} = \frac{2.8}{214.91} =$	= 0.01						
		L 214.91 $\Theta =$	$\tan^{-1}(0.01) =$	0°44′47"	y				
	∴Redi		ing of SP = N						
	: Whole circle Bearing of SP = 360° - $0^{\circ}44'47" = 359^{\circ}15'13"$								
		O 70 11							
	Step 6	6) Table : Line		Pagring	Reduce	d I	attitude	Danartura	
		Line	Length	Bearing	Bearing		attitude	Departure	
		AB	155.80	78°30′	N78°30		.06	152.67	
		BC	175.00	155°35′	S24°25′		59.34	72.33	
		CD	238.50	248°42′	S68°42′		5.63	-222.20	
		DA	214.92	359°15′27	7" N0°44°4	17'W 2:	14.91	-2.8	
	State	e fundai	nental axi	s and lines	of theodo	lite and gi	ve relatio	ns between them	
	Ans:	Axes a	nd lines						
	1	. Line	of collimat	ion or line	of sight				2M
	1		of Telesco		0				(any
	1		of bubble t						four
	4. Vertical Axis								
	5 Horizontal Axis								
				en differei	nt axis of th	neodolite.			
	Relation between different axis of theodolite. 1. Line of collimation and axis of telescope should coincide with each other.								
	1	. Line	of collimat	ion and ax	is of telesco	ppe should	coincide	with each other.	2M
								with each other.	2M (any

								E
	4 Axis of plate level must be perpendicular to vertical axis.							
	5 If the instrument has fixed vertical circle verniers, it must read zero in leveled							
J)	Position.							
d)	State the features of electronic theodolite. Ans: Following are features of Electronic Theodolite.							
						1		
	1			l keyboard with for night operat		keys.		1M
				battery with aut		f		(any
	1	ompatabilit		•	to power cutor	1.		four)
				with RS-232 C	compatibility			10001
		ree keys co			1 ,			
	1	•		ting measureme	_			
				a from memory	as well as ch	anging sign(+	or -)	
5.	Attempt	any THRE	E of the	e following.				12M
a	Calculate	consecutiv	e co-or	dinates of follo	wing traverse	•		
			Line	Length(m)	WCB			
			AB	162	120° 30'			
			ВС	142	17° 30'			
			CD	201	220° 30°			
	DA			120	120 333° 20'			
	Line	Length(m)	educed earing	latitude L*cosθ	Departure L*sinθ		
	AB	162		59°30′ E	-82.22	+139.58	-	
	BC	142		17°30′ E	+135.42	+42.70		
	CD	201	_	40°30′ W	-152.84	-130.54		
	DA	120	_	26°40′ W	+107.23	-53.85	-	**
Calculations: Consecutive co-ordinates of Survey lines. Line AB- Latitude = $I^*\cos\theta = 162 \times \cos 59^{\circ}30' = -82.22$ Line BC- Latitude = $I^*\cos\theta = 142 \times \cos 17^{\circ}30' = +135.42$ Line CD- Latitude = $I^*\cos\theta = 201 \times \cos 40^{\circ}30' = -152.84$ Line DA- Latitude = $I^*\cos\theta = 120 \times \cos 26^{\circ}40' = +107.23$ Line AB- Departure = $I^*\sin\theta = 162 \times \sin 59^{\circ}30' = +139.58$ Line BC- Departure = $I^*\sin\theta = 142 \times \sin 17^{\circ}30' = +42.70$ Line CD- Departure = $I^*\sin\theta = 201 \times \sin 40^{\circ}30' = -130.54$ Line DA Departure = $I^*\sin\theta = 120 \times \sin 24^{\circ}40' = -53.85$								
	**(½Mar	k for each o	correct l	atitude and ½	Mark for each	ocorrect Dep	arture)	
				OUR C	ENTERS :			

	tacheometer	·.						
		Distance	50 m	100 m				
		Staff readings	1.20,1.40,1.60	1.25,1.45,1.65				
		ts of tacheometer.						
	Case 1 :	/ixS1+(f+c)			43.5			
	D1 = 17	, 1 × 51 + (1 + €)			1M			
	50 = f/	i x (1.60 - 1.20) + (f + c)					
	50= 0.4	40 x f/i + (f + c)	(1)		1M			
	D2 = f/ i	x S ₂ + (f + c)						
	100 = f/	/ i x (1.65 – 1.25) +	(f + c)					
	100 -0	40 x f/i+(f+c)	(2)		1M			
	100 -0.	40 % 1/ 1 + (1 + C)	(2)					
	1 '	ninus equation 1 giv	es result as :		1M			
	50=0				INI			
	Note: If stu		to solve the que	stion as above give appr	opriate			
c	List any four feature of total station.							
	Following ar	re the features of to	tal station.					
	, ,	iracy and long me						
	'	racy: ± (2 mm + 2						
			mini prism is 0.9 ki single prism is 2 kn					
				11.	1M			
		Long measuring range with 3 prism is 2.7 km. b) Versatile application programs.						
	,			road calculation and mar	ny more (any			
	function		•		four)			
	2) Integra	ated alphanumeric	key realizes the qui	cker operation.				
	, ,	internal memory up						
	,	d absolute encode						
				uire zero set and it can also	realize			
	I	easurement with les						
		· water-resistant a v about sudden ba	_					
d	+	e) No worry about sudden bad weather State various applications of GIS.						
u			J13.					
	Applications							
	1) Map maki				1M			
	2) Site select				each			
	3) Mineral Ex	•	gamant.		(any			
	1 '	planning and mana			four)			
		ental Impact studie		RS:				
	o) ivatural Ha	azard mapping or a	MBIVLI THANE	NERUL DADAR				

	7) Water Resources availability.	
6.	8) Road network analysis and planning Attempt any TUPEE of the following	12M
	Attempt any THREE of the following	12101
1	State errors eliminated by the method of repetition.	
	 The errors eliminated by repetition method are: Errors due to eccentricity of verniers and centers are eliminated by taking the both vernier readings and averaging them. Errors due to in adjustments of line of collimation and trunnion axis are eliminated by taking both face left and face right readings. Errors due to inaccurate graduations are eliminated by taking the readings at different parts of circle. Errors due to inaccurate bisection of object may compensate each other. Errors due to improper levelling can be minimized. 	1M each (any four
)	Explain offset from long chord method curve setting.	
	Given data: direction of two straights, chainage of point of intersection, radius of	1M fig.
	curve	
	Procedure:	
	 Set theodolite over B and measure deflection angle φ Calculate tangent length by formula Rx tan (φ/2). Locate first tangent T₁ point by measuring backward along BA distance equal to tangent length and second tangent point T₂ by measuring forward along BC distance equal to tangent length. Divide long chord into even number of equal parts. Calculate ordinate O0 by formula O0 = R - (R²-(L/2)²)^{0.5} and other ordinates by formula O_x = (R²- x²)^{0.5} - (R - O0). Locate mid point of Long chord (point E). Chain is laid in ET₁ direction, perpendicular is erected at E, say by optical square, point on curve is fixed by measuring distance O₀ along the erected perpendicular. Other offsets are similarly set. Curve being similar about mid point of long chord, calculations for right half are similar to left half. 	3M proceure.
	OUR CENTERS :	

c	State the principle of EDM with sketch.	
	Transmitter Tansmitted wave Reflector with prism Reflected wave	2M
	 Let the distance between P and Q be 'D' which is to be measured. A wave transmitted from the transmitter at station 'P' with certain phase angle. There is a reflector at the other end 'Q'. Reflector consist of prism. The wave strikes on reflector at Q and then gets reflected from Q. It is received back at the transmitter end at 'P' with different phase angle. For finding the distance, the phase difference between transmitted wave is measured and converted into distance. 	2M
d	State the different sources of error in GIS	
	Source of Error in GIS Following are the various source of error in GIS 1. Error due to source data: a) Geometrical and semantic errors in the compilation of the source maps. b) Inaccuracy in source data. c) Inaccuracies due to the range character of natural boundaries. d) Error due to source data being out of date. e) Limitation of survey equipment. 2. Error occurring due to data input: a) Error in attribute data entry. b) Error due to operation mistakes. 3. Error in data storage: a) Error due to limited precision with which co-ordinates and other numerical data are stored. b) Error arising from resterization. 4. Error in data analysis and manipulation: a) Error due to incorrect formula used.	1M each (any four